Transforma logo

Industrial Transformation

 

Digital Transformation Potential in Industry

Arguably, Industrial Transformation is where Digital Transformation started. Industrie 4.0 and similar initiatives around the world highlighted the potential of new technologies such as IoT and AI when deployed to support manufacturing industries.

Industrial Transformation is, however, very much still a work in progress. Countless legacy assets installed into industrial locations stretching back over decades afford significant potential for digitally transformative solutions. Meanwhile Automated Guided Vehicles (AGVs) and other robotics and automated systems are transforming production processes and intralogistics. In parallel, IoT and AI in particular are extending digitally transformed and value-added servitised propositions right to end-user locations.

Seven key domains of change in Industrial Transformation

Overall, we have identified nine key domains of change in the Industrial Transformation sector that are enabled by digital transformation, as illustrated below.

Industrial_Transformation_DC.png

These domains of change are discussed in more detail in our report Digital Transformation in the Manufacturing Sector:

DX in Manufacturing.png

The domains of change discussed in the report comprise:

  • Intralogistics Optimisation encompasses multiple dimensions including inventory and warehouse management, transportation optimisation, workflow optimisation, asset tracking and monitoring and autonomous vehicles.
  • X-as-a-Service (vendor and end-user perspectives) considering the provision of assets that have traditionally been sold in return for a single upfront fee instead being offered as a service in return for an ongoing revenue stream.
  • Worker Assistance including ‘cobot’ assistance devices that help workers to be more productive by undertaking some of their tasks such as pre-positioning components or delivering parts to the workstation
  • Quality Control and Assurance to ensure product properties are consistent and up-to-par, equipment recalibration and the optimisation of production lines is constantly performed as process drifts and other changes in the production line occur.
  • Additive Manufacturing, or 3D printing, a technique for ‘printing’ objects by depositing incremental layers of material.
  • Brownfield Machine Monitoring including the gathering of better information and improved analyses applied to available information.
  • Environment Monitoring including the monitoring of production environments to help make sure that the environment in the manufacturing premises is free from pollutants and safe for workers.

Collectively, the activities listed above will bring significant changes to the Industry.

IoT and Industrial Transformation

IoT is one of the key technology groups impacting Industrial Transformation and further detail and analysis of key IoT applications for industry can be found in Transforma Insight’s Forecast Insight Reports. Some of these applications are directly relevant to the sector, whilst others are only indirectly related.

Directly related IoT applications and Forecast Insight Reports include:

  • Precision Specialist Robots – This Application Group comprises machinery focused on a diverse range of specific tasks including remote surgery and automated manufacturing robots. These will all operate at the highest levels of autonomy, without requirement for human intervention.
  • Unmanned Non-Road Vehicles – The Unmanned Non-Road Vehicles Application Group represents autonomous wheeled and tracked vehicles used for transporting materials, performing specific tasks or other similar activity in verticals such as agriculture, construction, mining, manufacturing, baggage handling, warehousing, space exploration or emergency response. The types of vehicles covered in this Application Group include forklifts, bomb-disposal vehicles, portside automated vehicles, straddle carriers and other specialised vehicles. Although these vehicles will not be intended for on-road use, they may be capable of travelling on public highways.
  • Remote Process Control – Remote monitoring of equipment to manage the device in the context of a wider business process and to integrate machine data. Focused on industrial and agricultural processes. Includes factory automation, airport automation systems and baggage handling, and automated port systems. Excludes warehousing. Also part of this Application Group is crop irrigation, including connections to, and control systems for, systems that are deployed in the open air and also in closed environments such as greenhouses.
  • Portable Information Terminals – Portable information terminals for staff in a range of vertical contexts, including retail and hotels.
  • Remote Diagnostics & Maintenance – Remote monitoring of equipment to spot faults and predict requirements for maintenance. Particularly focused on factory machinery, healthcare devices and vertical transportation (elevators and escalators).
  • Asset Monitoring – This application group encompasses a variety of assets that are suitable for remote monitoring. This includes the monitoring of livestock and associated applications such as automated feeders. It also covers the monitoring of fitness equipment located in gyms and other shared contexts. Tracking and monitoring of equipment in ambulances is also incorporated as part of the healthcare vertical. Furthermore, this Application Group includes connected video gaming machines, gambling machines and other devices such as pachinko machines. Monitoring the condition, availability, and use of assets important to public health such as life rings and defibrillators is also present in this application group, including access to potentially dangerous infrastructure such as substations.

Indirectly related IoT applications and Forecast Insight Reports include:

  • Global AIoT Forecast, 2023-2033
  • Road Fleet Management – Road Fleet Management covers in-vehicle transportation logistics including job allocation, vehicle tracking, vehicle and driver monitoring, maintenance planning, safety compliance, fuel management, and incident management. It can be delivered as a service via a dedicated aftermarket device or through the factory-fit connectivity (accessed via the vehicle head unit). The forecast takes both heavy and light duty vehicles into consideration. It includes devices deployed in cars, vans, trucks and buses, along with heavy vehicles such as tractors, combine harvesters, pile drivers, tunnelling machines, cranes, and other off-road equipment. Fleet Management solutions are increasingly making use of in-vehicle cameras to monitor both outside the vehicle and within the cabin. These devices, and their consumer counterparts, can be found in the Dash Cams Application Group.
  • Unmanned Aquatic & Aerial Vehicles (Drones) – This Application Group consists of two main categories. Unmanned Aerial Vehicles comprises fixed wing and propellor powered unmanned aerial vehicles (UAVs) for military, government consumer or commercial use. Unmanned Aquatic Vehicles comprise small underwater and surface vehicles, typically for military use or exploration. Neither vehicle is designed to carry humans; automation of vehicles that carry humans (e.g. full sized planes or ships in automation mode) is covered under autonomous vehicles.
  • Global IoT Forecast Report, 2023-2033
  • Personal Assistance Robots – This Application Group covers fully autonomous machines which undertake a diverse set of use cases including security monitoring, maintenance, human interaction, companionship and the performance of other tasks. This includes robotic pets, cleaning robots (e.g. Roomba), lawn mowers, exoskeletons, cooking robots, room and table delivery, and concierge services.
  • Real World 'Visualisation' – Includes the use of Human Machine Interface (HMI), Augmented Reality (AR), and Virtual Reality (VR) devices such as smart connected glasses, such as Microsoft’s Hololens, or Google Glass, used in either a consumer or enterprise context; standard and ruggedised tablets that can be used to access information about machinery and processes (and more); and large scale video walls, either in the context of control rooms, or to support immersive experiences. To be included in this forecast a device must be standalone, and not attached to a specific machine. Devices must also support some level of enhanced human interaction with machines (and other information, or content) rather than simply existing to relay information from a device or accept commands. Beyond this scope lie innumerable generic tablets, laptops, mobile phones, and other computing devices that can also support some aspects of HMI by simple installation of an application (or access to suitable web pages).
  • Real Time Location Systems – Trackers attached to pieces of equipment for the purpose of locating them, typically with very great accuracy. Used within specific delimited areas (e.g. hospitals, building sites or factories), with dedicated infrastructure to support them.
  • Worker Safety – Personal monitoring and support solutions for fire service, police, and emergency medical service personnel. Also includes lone worker safety in multiple vertical industrial contexts, particularly those involving dangerous environments such as logging and mining.

Other content and related analysis

Besides the detailed sector-focussed content described above, Transforma Insights offers an extensive range of thematic- and vendor-focussed research that will prove invaluable to any end-user seeking to leverage new and emerging digitally transformative technologies.

Of particular note are our Vendor Insight and CSP Peer Benchmarking reports, which provide detailed profiles of leading vendors who might be able to support a range of end-user digital transformation projects.

Our Key Topic Insight reports focus on the qualitative aspects of Digital Transformation, including investigation of interesting or noteworthy topics.

Detailed analysis of regulations that might apply to digitally transformative projects around the world can be found in our Regulatory Database. Meanwhile, our Case Study Database contains more than 1,000 case studies of technology implementations. Each case study contains detailed information on the specifics of the deployment. Used in aggregate it can provide unrivalled guidance on project prioritisation, best practice and vendor selection.

Sector Report

Related Reports

All Reports
REPORT | NOV 27, 2024 | Paras Sharma ; Matt Arnott ; Rohan Bansal
Globally, the deployment of Precision Specialist Robots is being driven across various industries by increasing blue-collar wages, ageing working populations, and the falling costs of robots. Additionally, the availability of 5G and private networks is encouraging the use of robots to perform complex and time-critical tasks such as remote surgery; it is being used in the healthcare industry to support healthcare professionals in multiple use cases including minimally invasive surgery. The Additive Manufacturing market is also growing, due to the ability to enable rapid prototyping, faster time to market, reduced material wastage, and on-demand production of customisable offerings. Some countries are promoting the use of additive manufacturing to decrease the dependency on imported parts and components, bringing greater efficiency to the supply chain. This report summarises the status and forecasts from the Precision Specialist Robots Application Group found in the Transforma Insights Connected Things IoT forecast. The report provides a description of what is covered in the Application Group, as well as top-level figures from the forecast that provide details on how many connected devices will be installed, the types of communication technology used and the total revenue opportunity. Full details are accessible through the IoT Forecast tool.
REPORT | AUG 08, 2024 | Suruchi Dhingra
This report examines the capabilities of Hitachi in Digital Transformation. It provides a comprehensive review of the products, services, and capabilities of Hitachi across 11 technology areas and dozens of functions, to determine its core strengths for meeting enterprise needs. The 11 technology families in which the vendors capabilities are assessed are IoT, Hyperconnectivity, Human Machine Interface, Artificial Intelligence, Distributed Ledger, Data Sharing, Product Lifecycle Management, Robotic Process Automation, Edge Computing, Autonomous Robotic Systems, and 3D Printing & Additive Manufacturing. While these might not encompass every possible technology that organisations might need in order to purse a Digital Transformation, they certainly represent the most disruptive, and therefore the ones of which enterprises should be most aware. The report includes rating across each of the technology areas and functional capabilities (specialised hardware, general hardware, software products, integrated solutions, application development, systems integration and project management, specialist services, field & operational services) using Transforma Insight’s four-level universal rating system for vendors in Digital Transformation. Internet of Things, for instance, spans hardware, software, application development, implementation, field services and specialist services. For each of the 92 combinations of function and technology, Hitachi is rated for whether its capabilities are ‘Emerging’, ‘Significant’ or ‘Market Leading’ (or ‘None’). This rating is based on both the credibility of the solution and the position of the offering in the market (e.g. market share).
REPORT | AUG 07, 2024 | Nikita Singh ; Matt Arnott
This report provides Transforma Insights’ view on the Remote Process Control market. It comprises two applications: Industrial Remote Process Control and Crop Irrigation Systems. The Industrial Remote Process Control Application includes factory automation, airport automation systems, baggage handling, and automated port systems. Remote Process Control is suitable for multiple enterprise sectors including manufacturing, construction, and agriculture. Some of the primary drivers for its adoption are increased operational efficiency, worker safety, the creation of new business models, and cost savings for operators. Most of these solutions support the use of large and expensive equipment and can help to reduce maintenance bills and machine downtime. Several government initiatives such as Germany’s Industry 4.0, Made in China 2025, and Japan’s Society 5.0 have also been driving adoption and support, particularly in the manufacturing industry. The report provides a detailed definition of the sector, analysis of market development and profiles of the key vendors in the space. It also provides a summary of the current status of adoption and Transforma Insights’ ten-year forecasts for the market. The forecasts include analysis of the number of IoT connections by geography, the technologies used (including splits by 2G, 3G, 4G, 5G, LPWA, short range, satellite and others), as well as the revenue split between module, value-added connectivity and services. A full set of forecast data, including country-level forecasts, sector break-downs and public/private network splits, is available through the IoT Forecast tool.
REPORT | MAY 17, 2024 | Suruchi Dhingra
The concept of a circular economy is becoming a priority for governments and organisations as they become increasingly aware of the environmental consequences associated with traditional linear waste disposal processes. Although regulations supporting the transition towards a circular economy began to emerge in the early 1990s, it is only now that they have become more defined and have started incorporating the use of new digitally transformative technologies. Digital technologies hold tremendous potential to enable the circular economy objectives of governments and corporate and other organisations. From advanced techniques which optimise product designs (that reduce waste) to intelligent interconnected systems (that optimise resource use), the possibilities are endless. By integrating these technologies, businesses can benefit from improved resource management, extended life of products, increased degree of recycling and reuse, appropriate waste disposal practices at the end-of-life, and more. For example, by analysing datasets related to product design materials and recycling processes, AI algorithms can suggest product designs that are aligned with circular economy principles. In this report, we focus on the role of digital technologies such as IoT, AI, Distributed Ledger, Autonomous Robotic Systems, 3D Printing and Additive Manufacturing, and Data Sharing in enabling a circular economy transition. Solutions using these technologies will make business models, products, and manufacturing processes more circular by facilitating knowledge exchange and connecting different stakeholders in the value chain. By integrating these technologies, businesses can benefit from improved resource management, extended life of products, increased degree of recycling and reuse, appropriate waste disposal practices at the end-of-life, and more.
REPORT | MAY 01, 2024 | Suruchi Dhingra
Several new regulations are being introduced around the world to promote circular, sustainable, and responsible economies. The goals of these regulations are clear: businesses should deploy an efficient mechanism to review how they design, source, manufacture, dispose, reuse, and recycle products. Mechanisms often report carbon emitted at each stage to promote clean energy use, and also limit the use of harmful substances, increase the degree of reuse and recycling by material composition tracking, limit materials from certain countries, and ensure human rights obligations and thus, responsible sourcing. To track these metrics, most of these regulations stress the importance of visibility and traceability of products throughout the value chain. The accurate collection and reporting of data mandated by the regulations discussed in this report is impossible without employing digitally transformative technologies that enhance the tracking and traceability of the discussed elements. Intelligent track and trace that combines technologies such as distributed ledger, IoT, AI, and analytics will be essential to automate tracking, making it fast and efficient to trace products throughout their journey. The whole process is made efficient through the adoption of a range of techniques: Product identifiers: the key identifier information that a stakeholder needs to accurately identify a product and to access related information. Data sharing: a common standardised way to share information among all relevant stakeholders. Supply chain traceability: essential to prove provenance and qualifications by tracking the origin of materials and physical flow of goods through the value chain. IoT: all of the above drive the adoption of IoT as it enables accurate and efficient data collection. Digital supply chain twin: to virtually track journeys with change of state. Artificial intelligence: intersects with other technologies for additional insights. In this report, we discuss the major regulations (including the EU’s Batteries Regulation, Carbon Border Adjustment Mechanism, and End of Life Vehicles Directive and others and the USA’s Inflation Reduction Act, and various EV battery-related and other regulations from around the world) that are shaping the circular, ethical, and green economy. We also discuss the role technology plays in facilitating the requirements of supply chain transparency related regulations.
REPORT | MAR 08, 2024 | Matt Arnott ; Paras Sharma
This report provides Transforma Insights’ view on the IoT market for Portable Information Terminals. This segment comprises the use of portable information terminals by employees in a range of vertical contexts, including retail and hotels. Many of these terminals will be tablets. However, to be counted as part of this forecast the tablet must be a single-purpose device used in an enterprise context. Businesses aim to improve the efficiency and productivity of their employees as part of their ongoing efforts to optimise their operations. The use of lightweight and mobile tablets supports employees in recording and presenting information digitally as well as managing resources and inventory more effectively. Industrial tablets reduce the dependency on manual labour by automating manual tasks, thereby reducing human error. The report provides a detailed definition of the sector, analysis of market development and profiles of the key vendors in the space. It also provides a summary of the current status of adoption and Transforma Insights’ ten-year forecasts for the market. The forecasts include analysis of the number of IoT connections by geography, the technologies used (including splits by 2G, 3G, 4G, 5G, LPWA, short range, satellite and others), as well as the revenue split between module, value-added connectivity and services. A full set of forecast data, including country-level forecasts, sector break-downs and public/private network splits, is available through the IoT Forecast tool.
REPORT | FEB 20, 2024 | Paras Sharma
The use of video monitoring solutions has unlocked significant improvements, from round-the-clock surveillance for security purposes to object detection, gesture detection, facial recognition, and motion tracking across industries to gain real-time business insights and prescriptive analysis. Using video analytics, businesses can unlock greater value by analysing spatial and temporal information, provide instant alerts in the event of anomaly detection, and take actions when rules are flouted. Business opportunities, deployment challenges, and stakeholder complexities vary across each application. The demand for video analysis is primarily driven by the benefits that it can bring like better operational efficiency, enhanced public safety, and decreased manual work. There is a wide range of applications that can make use of some or all of these business benefits to gain a competitive advantage and provide a quality service or product to the end-user. There are 23 applications, around 7% of the total applications found in our IoT forecast database, for which video analysis can potentially substitute for IoT devices. Livestock Monitoring, Traffic Monitoring, Parking Space Monitoring, Fire and Security Alarms, Patient Tracking, and Trigger devices are some of the key IoT applications which can be substituted with video analysis. As per our analysis, Security Alarms, Stock Level Monitoring, In-Vehicle Road Pricing Devices, and Fire Alarms are the top applications in terms of connected devices that can potentially be replaced by video analysis. The number of IoT devices for the above-mentioned applications is expected to grow from around 0.9 billion in 2022 to around 2.4 billion by 2032. Even though the share of IoT devices that can be replaced by video analytics is expected to be less than 10% during the forecast period, we cannot neglect the potential of video analysis due to its business benefits and varied use cases across applications. Additionally, in cases where video analytics can substitute for LPWA connections, this substitution may represent an upsell opportunity for mobile network operators and an opportunity to deploy a higher bandwidth connection.
REPORT | JAN 30, 2024 | Matt Arnott ; Nikita Singh
This report provides Transforma Insights’ view on the Remote Diagnostics and Maintenance market. This segment comprises three application groups: Machinery Remote Diagnostics and Maintenance, Healthcare Manufacturer Monitoring and Vertical Transportation system. Remote Diagnostics & Maintenance has significant potential across the Industrial IoT domain. This includes OEM-installed connectivity in addition to retrofitting functionality on both new and brownfield equipment predominantly within the manufacturing domain. This Application Group also includes virtual monitoring of critical hardware devices in the healthcare sector and the use of IoT-enabled hardware solutions within the vertical transportation segment including lifts and escalators. Most of these devices are likely to support large and expensive equipment and reduce high maintenance bills and machine downtime. The report provides a detailed definition of the sector, analysis of market development and profiles of the key vendors in the space. It also provides a summary of the current status of adoption and Transforma Insights’ ten-year forecasts for the market. The forecasts include analysis of the number of IoT connections by geography, the technologies used (including splits by 2G, 3G, 4G, 5G, LPWA, short range, satellite and others), as well as the revenue split between module, value-added connectivity and services. A full set of forecast data, including country-level forecasts, sector breakdowns and public/private network splits, is available through the IoT Forecast tool.